实验室
极地海洋环境生态实验室
2019年11月08日    作者: 88805tccn新蒲京    发布 : 88805tccn新蒲京

一、极地海洋环境生态实验室介绍

极地海洋环境与生态实验室团队由金梅兵教授带领,共有教授2名(金梅兵、王晓春),讲师4名(董济海、禹凯、夏瑞彬、孙文金)及研究生多名。

研究目标是极地海冰、海洋温、盐、环流和生态环境在多时空尺度上的变化特征及其相互作用,并探讨极地物理和生态对全球变化的响应与反馈机制。在研究过程中不断完善对极地海冰、海洋中尺度和次中尺度、海洋混合、层化等过程在数值模式中的参数化方案,提高模式对海冰、海洋生态变化的模拟精度。

研究的方法包括:现场观测、遥感数据分析、理论探究及全球和高分辨率区域冰-海-生态耦合模式。本团队与多家国际先进的地球系统模式开发机构NCAR、LANL、GFDL以及其它大学和海洋研究机构(如WHOI、日本JAMSTEC、加拿大渔业海洋局海洋研究所、英国国家海洋中心等)有良好的合作研究关系。

二、研究目标和方法

总的研究目标是极地海冰、海洋、和生态环境在多时空尺度上的变化特征及其相互作用,并探讨极地物理和生态对全球变化的响应与反馈机制。在研究过程中完善对极地海冰、海洋的中尺度和次中尺度、海洋混合、层化等的过程的理解和理论与模式表达,提高对海冰、海洋生态变化的理解和模式的模拟精度。研究的方法将结合对现场观测和遥感数据的分析,理论研究及应用全球和高分辨率的区域冰-海-生态耦合的模式。

图1-1.png 图1-2.png

图1 北极高分辨率冰-海-气耦合模式区域(左,红框为大气和陆地模块,蓝色为海洋模块)和模块框图(右)

图2-1.png 图2-2.png

图2 模式模拟的北极冬季海冰厚度(左)和温跃层深度(右)

图3-1.png 图3-2.png

图3 模式模拟的北冰洋冬季表层NO3(左)和年初级生产力(右)

三、科学研究

1. 建立了北极高分辨率冰-海-气耦合模式,发展了冰下次网格盐析致海洋混合的参数化方案,并成功应用于RASM和CESM等国际知名模式。揭示了全球变暖趋势下北极海冰和大尺度海洋环流、水团和温盐垂直结构的季节、年际到年代际的变化规律。

2. 基于已经建立的北极高分辨率冰-海-气耦合模式,建立了国际领先的极地海洋生态模式,揭示了全球变暖趋势下北极生态环境、物理和生物泵的长期变化趋势。

3. 基于海洋卫星资料(高度计、SST、叶绿素等)、现场观测、浮标资料(ITP、Argo)并结合数值模式,分析了北极及亚北极海域内中尺度涡旋的空间分布、生命期长度、垂向穿透深度、涡旋区与非涡旋区的差异以及涡旋对营养盐输运和生态环境的影响。

4. 分析极地海洋环境与生态的季节内、年际到长期变化的多尺度相互作用,揭示冰、海耦合系统中的生物气候学和生态过程的气候响应规律。

四、科研成果

1. Ji. R., M., Jin, Y., Li, Y., Kang, C., Kang, (2019), Variability of primary production among basins in the East/Japan Sea: role of water column stability in modulating nutrient and light availability. Progress in Oceanography, 178,102173, https://doi.org/10.1016/j.pocean.2019.102173.

2. Elliott S., S. Burrows, P. Cameron-Smith, F. Hoffman, E. Hunke, N. Jeffery, Y. Liu, M. Maltrud, Z. Menzo, O. Ogunro, L. Roekel, S. Wang, M. Brunke, M. Jin, R. Letscher, N. Meskhidze, L. Russell, I. Simpson, D. Stokes, and O. Wingenter (2018), Does marine surface tension have global biogeography? addition for the OCEANFILMS package. Atmoshpere, 9(6), 216; dio:10.3390/atmos9060216.

3. Jin, M., C. Deal, W. Maslowski, P. Matrai, A. Roberts, R. osinski, Y. J. Lee, M. Frants, S. Elliott, N. Jeffery, E. Hunke, S. Wang (2018), Effects of model resolution and ocean mixing on forced ice-ocean physical and biogeochemical simulations using global and regional system models. J. Geophys. Res. Oceans, 123(1), 358-377, https://doi.org/10.1002/2017JC013365.

4. Elliott, S., N. Jeffery, E. Hunke, C. Deal, M. Jin, S. Wang, E.E. Smith and S. Oestreicher (2017), Strategies for the simulation of sea ice organic chemistry: Arctic tests and development, Geosciences, 7, 52:1-38; doi:10.3390/geosciences7030052.

5. Li, Y., R. Ji, S. Jenouvier, M. Jin, J. Stroeve (2016), Synchronicity between ice retreat and phytoplankton bloom in circum-Antarctic polynyas, Geophysical Research Letter, 43, doi:10.1002/2016GL067937.

6. Lee, Y. J., P.M. Matrai, M.A.M. Friedrichs, V. S., Saba, O.Aumont, M. Babin, E.T. Buitenhuis, M. Chevallier, L. Mora, M. Desert, J.P. Dunne, I.H. Ellingsen, D. Fredman, R. Froun=in, M. Gehlen, T. Gorgues, T. LLyina, M. Jin, J.G. John, J. Lawrence, M. Manizza, C.E. Menkes, C. Perruche, V. LeFouest, E.E. Popova, A. Romanou, A. Samuelsen, J. Schwinger, R. Seferian, C.A. Stock, J.Tjiputra, L.B. Tremblay, K. Ueyoshi, M. Vichi, A. Yool and J. Zhang (2016), Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models, J. Geophys. Res. Oceans, 121, 8635-8669, doi:10.1002/2016JC011993.

7. Jin, M., E. E. Popova, J. Zhang, R. Ji, D. Pendleton, Ø. Varpe, A. Yool, and Y. J. Lee (2016), Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean, J. Geophys. Res. Oceans, 121, 934-948, doi:10.1002/2015JC011183.

8. Steiner, N. S., T. Sou, C. Deal, J. M. Jackson, M. Jin, E. Popova, W. Williams, and A. Yool (2016), The future of the subsurface chlorophyll-a maximum in the Canada Basin - A model intercomparison, J. Geophys. Res. Oceans, 121, 387-409, doi:10.1002/2015JC011232.

9. Jin M., J., Hutchings, and Y., Kawaguchi (2015), Sensitivity study of subgrid scale ocean mixing under sea ice using a two-column ocean grid in climate model CESM. Frontiers of Earth Science, 9(4): 594-604, doi:10.1007/s11707-014-0489-9.

10. Wang, J., K. Mizobata, X. Bai, H. Hu, M., Jin, Y. Yu, M. Ikeda, W. Johnson, W., Perie, and A. Fujisaki (2014), A modeling study of coastal circulation and landfast ice in the nearshore Beaufort and Chukchi seas using CIOM, J. Geophys. Res. Oceans, 119, doi:10.1002/2013JC009258.

11. Ji R., M., Jin and O., Varpe (2013), Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Global Change Biology, doi: 10.1111/gcb.12074, 19, 734-741.

12. Deal, C.J., N. Steiner, J. Christian, J. Clement Kinney, S. Elliott, G. Gibson, M. Jin, W. Lee, S.Lee, W. Maslowski, J. Wang, and E. Watanabe (2013), Progress and challenges in biogeochemicalmodeling of the Pacific Arctic Region, In: (eds) Grebmeier, J.M. and W. Maslowski, The Pacific Arctic Region: Ecosystem Status and Trends in a Rapidly Changing Environment, Springer, Dordrecht, p 393-446.

13. Jin M., J., Hutchings, Y., Kawaguchi, and T., Kikuchi (2012), Ocean mixing with lead-dependent subgrid scale brine rejection parameterization in climate model. Journal of Ocean University of China, 11(4): 473-480, doi: 10.1007/s11802-012-2094-4.

14. Elliott, S., C. Deal, G. Humphries, E. Hunke, N. Jeffery, M. Jin, M. Levasseur, and J. Stefels (2012), Pan-Arctic simulation of coupled nutrient-sulfur cycling due to sea ice biology: Preliminary results, J. Geophys. Res., 117, G01016, doi:10.1029/2011JG001649.

15. Popova, E. E., A. Yool, A. C. Coward, F. Dupont, C. Deal, S. Elliott, E. Hunke, M. Jin, M. Steele, and J. Zhang (2012), What controls primary production in the Arctic Ocean? Results from an intercomparison of five general circulation models with biogeochemistry, J. Geophys. Res., 117, C00D12, doi:10.1029/2011JC007112.

16. Jin M., C. Deal, S.H. Lee, S. Elliott, E. Hunke, M. Maltrud and N. jeffery (2012), Investigation of Arctic sea ice and ocean primary production for the period 1992 to 2007 using a 3-D global ice-ocean ecosystem model. Deep-Sea Research II, 81-84: 28-35, doi: 10.1016/j.dsr2.2011.06.003.

17. Deal C., M., Jin, S., Elliott, E., Hunke, M., Maltrud, and N., Jeffery (2011), Large-scale modeling of primary production and ice algal biomass within arctic sea ice resulted from the 1992 model simulation. Journal of Geophysical Research-Ocean, Vol. 16, C07004, doi: 10.1029/2010JC006409.

18. Clainche,Y.L.Vezina A., Levasseur, M.,Cropp R., Gunson, J., Vallina, S.,Vogt, M.,Lancelot, C., Allen, I., Archer, S., Bopp, L., Deal, C., Elliott, S., Jin, M., Malin, G., Schoemann, V., Simo, R., Six, K., and Stefels, J. (2010), A first appraisal of prognostic ocean DMS models and prospects for their use in climate models. Global Biogeochemical Cycles, doi: 10.1029/2009GB003721.

19. Lee, S., Jin, M., Whitledge, T.E., 2010. Comparison of bottom sea-ice algal characteristics from coastal and offshore regions in the Arctic Ocean. Polar Biology, doi:10.1007/s00300-010-0820-1.

20. Wu, J.,Rember, R., Jin, M., Boyle, E.A., and Flegal, R.A. (2010), Isotopic evidence for the source of lead in the North Pacific Abyssal Water. Geochimica et Cosmochimica Acta, doi:10.1016/j.gca.2010.05.017, 74, 4629-4638.

21. Jin M., C.J. Deal, J. Wang, and C.P. McRoy, 2009. Response of lower trophic level production to long-term climate change in the southeastern Bering Sea. Journal of Geophysical Research, 114(C4), C04010, doi:10.1029/2008JC005105.

22. Wu J. and M. Jin, 2009. Competitive ligand exchange voltammetric determination of iron organic complexation in seawater: examination of accuracy using computer simulation and elimination of artifacts in ideal two-ligand case using iterative non-linear multiple regression. Marine Chemistry, 114, 1-10. doi:10.1016/j.marchem.2009.03.001.

23. Jin M., C.J. Deal, and J. Wang (2008), A coupled ice-ocean ecosystem model for 1-D and 3-D applications in the Bering and Chukchi Seas. Chinese Journal of Polar Science, 19(2), 218-229.

24. Wang J., M. Jin, J. Takahasi, T. Suzuki, I.V. Polyakov, K. Mizobata, M. Ikeda, F.J. Saucier, and M. Meier, 2008. Modeling Arctic Ocean heat transport and warming episodes in the 20th century caused by the intruding Atlantic Water. Chinese Journal of Polar Science, 19(2), 159-167.

25. Deal, C., M. Jin and J. Wang, 2008. The significance of water column nitrification in the southeastern Bering Sea. Chinese Journal of Polar Science, Vol. 19, No. 2, 185-192.

26. Wang J., K. Mizobata, H. Hu, M. Jin, S. Zhang, W. Johnson, K. Shimada, and M. Ikeda, 2008. Modeling seasonal variations of ocean and sea ice circulation in the Beaufort and Chukchi Seas: A model-data fusion study. Chinese Journal of Polar Science, 19(2), 168-184.

27. Jin, M., J. Wang, K. Mizobata, H. Hu, K. Shimada 2008. Observations and modeling of ice-ocean conditions in the coastal Chukchi and Beaufort Seas. Acta Oceanologica Sinica, Vol 27, No. 3, 79-87.

28. Jin, M., C. Deal, J. Wang, V. Alexander, R. Gradinger, S. Saitoh, T. Iida, Z. Wan, and P. Stabeno, 2007. Ice-associated phytoplankton blooms in the southeastern Bering Sea. Geophysical Research Letters, 34(6), L06612, doi:10.1029/2006GL028849.

29. Holloway, G., F. Dupont, E. Golubeva, S. Hakkinen, E. Hunke, M. Jin, M. Karcher, F. Kauker, M. Maltrud, M. A. Morales Maqueda, W. Maslowski, G. Platovc, D. Stark, T. Suzhki, M. Steele, J. Wang, J. Zhang. 2007. Water properties and circulation in Arctic Ocean models. . Journal of Geophysical Research-Ocean, 112, C04S03, doi:10.1029/2006JC003642.

30. Jin M., C.J. Deal, J. Wang, K.H. Shin, N. Tanaka, T.E. Whitledge, S.H. Lee, and R.R. Gradinger, 2006. Controls of the landfast ice-ocean ecosystem offshore Barrow, Alaska. Annals of Glaciology, Vol. 44, 63-72.

31. Jin M., C.J. Deal, J. Wang, N. Tanaka, and M. Ikeda, 2006. Vertical mixing effects on the phytoplankton bloom in the southeastern Bering Sea mid-shelf. Journal of Geophysical Research, 111, C03002,doi:10.1029/2005JC002994.

32. Wang J., Q., Liu, M., Jin, M., Ikeda and F. J., Saucier, 2005. A Coupled Ice-Ocean Model in the Pan Arctic and North Atlantic Ocean: Simulations of Seasonal Cycles. Journal of Oceanography, Vol. 61, 213-233.

33. Wang, J., M. Jin, D.L. Musgrave, and M. Ikeda, 2004. A Hydrological Digital Elevation Model (DEM) for Freshwater Discharge into the Gulf of Alaska. Journal of Geophysical Research, 109, C07009, doi:10.1029/2002JC001430.

34. Jin M., J. Wang, 2004, Interannual variability and sensitivity study of ocean circulation in Prince William Sound, Alaska from 1995-1998. Continental Shelf Research, Vol. 24, Issue 3, 393-411. doi:10.1016/j.csr.2003.10.012.

五、人才队伍

姓名

学位、职称

研究方向

金梅兵

博士、教授


王晓春

博士、教授


刘宇

博士、副教授

区域海洋数值模拟

禹凯

博士、讲师

海洋动力过程

王栋

博士、教授

海洋内波

王锦

博士、讲师

区域海浪数值模拟

董济海

博士、讲师

亚中尺度过程

田清

博士、讲师

近海物质输运

单海霞

博士、讲师

区域海洋海气相互作用

李春辉

博士、讲师

近海物质输运

孙文金

博士后

涡致诱导的混合

徐广珺

博士研究生

海洋遥感动力学

高晓倩

博士研究生

海洋湍流分析

孙同美

博士研究生

海洋中尺度碳输运

韩国庆

博士研究生

多尺度海洋环流

蒋星亮

博士研究生

区域海洋模式与数值同化

Kenny

博士研究生

海气相互作用

王海丽

博士研究生

海洋上层边界层混合

王森

本硕博连读生(与朱伟军教授联合培养)

中尺度海气相互作用

王青玥

本硕博连读生

海洋淡水再分配过程

张一鸣

本硕博连读生

海冰动力学

林夏艳

博士研究生(与海洋二所陈大可院士联合培养)

涡旋诱导的输运

李俊德

博士研究生(与海洋二所苏纪兰院士联合培养)

印度洋多尺度过程

季巾淋

博士研究生(与海洋二所陈大可院士联合培养)

中尺度海气相互作用

曹玉晗

硕士研究生

区域海洋波浪数值模拟

余洋

硕士研究生

中尺度海气相互作用

时海云

硕士研究生

海洋遥感动力学

John Bright

硕士研究生

海气相互作用

陆晓婕

硕士研究生

海气相互作用

韦销蔚

硕士研究生


张慧敏

硕士研究生


联系我们:

地址:南京市宁六路219号

邮编:210044

电话:025-58695733

下一条:极地海洋环境生态实验室

88805tccn新蒲京
版权所有 © 2023  88805tccn新蒲京(官方认证)-Best App Store  NUIST备80019
地址:江苏省南京市宁六路219号 邮编:210044 网址:www.shjinlan.com
请使用Chrome或IE9以上浏览器 
Baidu
sogou